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ABSTRACT

Linear anelastic phenomena in wave propagation problems can be well modeled

through a viscoelastic mechanical model consisting of standard linear solids. In this

paper we present a method for modeling of constant Q as a function of frequency

based on an explicit closed formula for calculation of the parameter fields. The pro-

posed method enables substantial savings in computations and memory requirements.

Experiments show that the new method also yields higher accuracy in the modeling

of Q than e.g., the Pad6 approximant method (Day and Minster, 1984).
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INTRODUCTION

Earth media attenuate and disperse propagating waves. Several modeling methods

for wave propagation, which take attenuating and dispersive effects into account, have

been presented (e.g., Robertsson et al. (1994), Carcione et al. (1988), and Martinez

and McMechan (1991a)) as have inversion methods developed for viscoelastic media

(e.g., Blanch and Symes (1994) and Martinez and McMechan (1991b)). Attenuating

effects also have a large impact on AVO results (Martinez, 1993).

Attenuating and dispersive effects are often quantified by the "quality factor", Q.

This quantity is losely defined as the number of wavelengths a wave can propagate

through a medium before its amplitude has decreased by ec-. A more strict definition

of Q will be given in the following section. Q has been found to be essentially

constant as a function of frequency (McDonal et al., 1958) over the seismic frequency

range, (approximately 1-200 Hz). Therefore a wave of higher frequency propagates

a shorter distance to decay a certain amount in amplitude, compared to a wave of

lower frequency. Futterman (1962) showed, through Kramer-Kr6nig's relation, that a

constant Q implied a specific dispersion relation. This dispersion relation was showed

to hold for both shale and plexiglass by Wuenchel (1965).

A correct modeling scheme should thus yield a constant Q and the dispersion re-

lation prescribed by Futterman (1962). This is easily obtained for a modeling method

based in the frequency domain, but is slightly more cumbersome for modeling meth-

ods based in the time domain. Modeling methods based in the frequency domain

are essentially limited to 1-D or layered (through propagator matrices) media and

we will therefore focus on "time domain methods". An approximately constant Q is

usually constructed, by using simple viscoelastic building blocks, to obtain a numer-

ically efficient modeling method based in the time domain. Day and Minster (1984)

showed that the best Pad6 approximant to a constant Q is a so-called Standard Lin-

ear Solid (SLS). Day and Minster (1984) also described a method to connect several
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SLSs in parallel to yield an excellent approximation to a constant Q in a pre-defined

frequency band. The method requires several SLSs to yield a good result and each

SLS is described by an individual parameter set. These two drawbacks makes the

approximation method expensive, with respect to both memory and time, to use for

viscoelastic wavepropagation modeling methods. The method is also quite compli-

cated, since it for instance is necessary to find roots of Legendre polynomials.

In this paper we present a method to find approximations to a constant Q which is

easier to use than Day and Minster's (1984) method and yields good approximations

using only a few SLSs. The viscoelastic description, used in the method, yields savings

during the viscoelastic wave simulation as well. We have chosen to call the method,

the "r-method", after the notation used in deriving the algorithm.

We will start by reviewing some basic viscoelastic concepts and definitions. We

will then continue by describing our method and finally compare results from finite-

difference viscoelastic wave propagation simulations, where the attenuation model

was found using the r-method, a single SLS approximation, the "Pad6 approximant"

method (Day and Minster, 1984), and an essentially analytic solution based on results

from McDonal et al. (1958), Futterman (1962), and Wuenschel (1965). The analytic

solution is obtained through a frequency domain method similar to the method de-

scribed by Martinez and McMechan (1991a).

LINEAR VISCOELASTIC MODEL

The constitutive relation for a linear elastic 2-D (i,j, k = x,y) or 3-D (i,j, k

x, y, z) homogeneous solid is,

o'ij = 'kk(ij + 21Cij, (1)

where oij are the components of the stress tensor, A and 1- the Lam6 constants,

and Eij the components of the strain tensor. For a linear viscoelastic material the
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multiplications in equation (1) become convolutions and the Lam6 constants time

dependent, so that,

A • Ekkij + 2M * Eij, (2)

(Christensen, 1982). The dot denotes derivative in time. Thus, a current deformation

state is related to previous ones through the stress relaxation functions, A(t) and M(t).

It is possible to express the time derivative of Eij as,
I

-ij = (Oivj + Ojvi), (3)

where vi is the velocity. Let us define,

I = A + 2M. (4)

Equations (2), (3), and (4) then yields,

aj = (ft - 2M) •kvk + M•I ivj. (5)

Together with Newton's second law,

10..Vi -=-0 ai• (6)
p

equation (5) describes viscoelastic wave propagation. The definition of II(t) allows

us to independently define quality factors, Q, for P- and S-waves. Robertsson et al.

(1994) describe an efficient 0(2,4) finite-difference scheme to solve the problem.

The SLS (a spring and a dashpot in series in parallel with a spring) has been

shown to be a quite general mechanical viscoelastic model (e.g., Day and Minster

(1984), Pipkin (1986), and Blanch et al. (1993)). An array of L SLS has the stress

relaxation function,

F(t)=MR 1- (1--) e-t/Tli) 0(t), (7)
1=1 Tl 1

where 0(t) is the Heaviside function, MR is the relaxed stress modulus corresponding

to F(t) (Pipkin, 1986), and Tl- and Trl are the stress and strain relaxation times for

the lth SLS (Pipkin, 1986). With our formulation we therefore have,
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1 L)H )= 1 -r 1 - Ce-'/o 0(t), (8)

and

M (t) = t 1 - 1- 1- r t l l 0 -/*' (t), (9)

where 7r = A + 2yt, and T, and rsl are the strain relaxation times for P- and S-waves

for the lth SLS. The same stress relaxation times, Tal, may be used for both P- and

S-waves. In this paper, we will also refer to an SLS as a relaxation mechanism.

The complex stress modulus, Mc(w), is defined as the Fourier transform of the

stress relaxation function (Pipkin, 1986). The quality factor, Q, is defined as,

Q(W) Re(Mc(w)) (10)~)=Ira(Mew))

(Bourbie et al., 1987). Equation (10) defines Q as the number of wavelengths a pulse

may propagate before its amplitude drops by a factor of e- (White, 1992). Q is thus

generally a function of frequency. For an array of standard linear solids equations (7)

and (10) yields,

L 1 + W 2TCITla

1 -L + -1+ Lw2r 
1

QE P)r~ -- L

1=1 ~I + 27'2

We may thus express the viscoelastic medium in terms of two arrays of SLS, 11(t)

and M(t) (equations [8] and [9]), given the Q vs. frequency relations for P- and

S-waves, the P- and S-velocities, and the density of the medium. Since attenuation

and dispersion are related through Kramer-Kr~nig's relation (Futterman, 1962), the

choice of a physically realistic Q vs. frequency relation yields an equally physical

dispersion relation. We will now derive a formula on closed form to calculate the Tel

and the r,1 in equation (11) for a desired constant Q, for P- and S-waves respectively.

THE r-METHOD

The basic arguments for the T-method are,
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"* simplicity in determining a constant Q model,

"* memory savings and less calculations in forward modeling of viscoelastic waves,

"* the convenience in having only one variable describing the magnitude of disper-

sion and attenuation in inversion routines.

We will later see that the T-method also yields more accurate results at a low compu-

tational cost than e.g., the Pad6 approximant method. We will assume that we want

to approximate a constant Q in a pre-defined frequency interval and that there exist

L preset stress relaxation times, Tql (see below).

The r-method is based on the simple observation that the level of attenuation

caused by a SLS can be determined by a dimensionless (frequency scale-independent)

variable, r. If we define T as,

Tel I - T7 l (12)

the inverse of Q for one SLS can be written as,

Q1 -I W., 7T (13)
1 + W27r(1 + ±T)

It is easily seen that the behavior in frequency is essentially determined by r, and

the magnitude of Q for the SLS essentially by r. This is not true for 7- larger than, or

even close to, 1. As we shall see, r << 1 generally. We have plotted Q as a function of

frequency for a SLS with two diffferent T, and two different T in Figure 1, to illustrate

the effect of the different parameters. The magnitude is the same but the curve is

displaced in frequency when -r is changed but r remains constant. The magnitude

of the curve changes with r on the other hand, but the curve does not move in

frequency when T, is held constant. We may therefore use T as a means to determine

the magnitude for several different SLSs, which assume maximum attenuation at

different frequencies. For one SLS T ; 2Q-i , where Qmin is the global minimum for

Q as a function of frequency. For more than one SLS, r is even smaller. Q is rarely
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less than 20 for any real materials, implying that T < 1. Using the parameter T to

tune an array of SLSs, and assuming that 1 + r - 1, equation (11) yields,

1 L WTT (14)
0-_ 1+ 2,r2 (14

/=1 + W0
2T

In this (approximate) expression Q-1 is linear in 7. We can therefore easily find the

best approximation in the least squares sense over a pre-defined frequency range to

any Qo, by minimizing over 7 the expression,

LW (Q-1(W, 7,J, T) - QO1) 2 dw. (15)

To find the minimum we set the derivative of J with respect to T to zero, and solve

for 7.

dJ wb 1 dQ'w,7,1 r
d ] _ 2 (Q- 1 (W, T0,1, T) - QO) dT dw 0 (16)

If we define,

F(w, 7-1) + 2±r21 (17)
1=1 7

we can write equation (16) as,

d = 2 T(F(w, Tj,)) - Qo1F(w, Tm) dw 0. (18)

We can now solve for 7, and find,

1 F(wr)dw
QJb( F Tj)) 2 dw' (19)

,W5a

The two integrals in equation (19) can be solved analytically, which yields an

explicit formula for T. The integrands (or methods) can be found in any standard

work on integral calculus or collection of mathematical formulas (e.g., RWde and

Westergren (1988)). It is of course possible to solve the integrals by some numerical

method as well. The final formula for T is,
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L

-1=1 L (20)Q 0 I II +} 2 : 1: 12kI

=l =1 k=

where

101 [log (i 22 t)]2 b (21)
2TI I + W j a

hi qj 1I arctan (Wora) - 1 rW+ (22)2rT, 1 1 + -21 '

I21k To,,ITrk [arctan (wr-,) arctan (w7rk) Wb

I~ k -- 2 - 7 --- ( 2 3 )
"7- rl k 7,01 1 Tak I.

The r-method generally yields a slightly too small r, i.e., slightly too large Q,

caused by the approximation T << 1. By using a slightly smaller Qo in equation (20)

than desired, it is possible to find the T which yields the desired Q. The effect of

underestimating r is more pronounced for a larger number of relaxation mechanisms

and a lower Q. An example of the r-method is shown in Figure 3, where five relaxation

mechanisms have been used to find a Q approximately equal to 20. Hence we used a

Qo approximately equal to 18 in equation (20) to calculate r.

If several r are to be calculated for an identical r-1 distribution and frequency

intervals, but different Qo, it suffices to calculate the integrals Ioj, Ili, and I21k and

corresponding the sums once. This can be seen from equation (20) since the integrals

are independent of Qo. To determine a new r it is thus sufficient to divide by a new

QO0

The distribution of the Tr1 is not determined by the r-method. Distributing the

ral logarithmically over the frequency range of interest generally yields good approxi-

mations to a constant Q. This is rI = 1/wi, about one per one-two octaves, which is

a good ad hoc rule of thumb (cf., Liu et al. (1976), Blanch et al. (1993), and example

in Figure 3 and Table 4). A closed formula for the optimal distribution of the vrI is

still an open question.
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The use of a single parameter determining the magnitude of several SLSs also

yields considerable savings for forward modeling of viscoelastic waves. There are

both less memory and calculations required for a certain problem (see section Imple-

mentation Considerations).

NUMERICAL EXPERIMENTS

In this section we benchmark the '--method against the Pad6 approximant method

(Day and Minster, 1984), a single relaxation mechanism (one SLS) approximation,

and an analytical solution which we will start by deriving. We compare seismograms

from I-D finite-difference simulations using the method described by Robertsson et

al. (1994). The results can immediately be generalized to 2-D and 3-D, since P- and

S-waves are modeled independently. We use models with different attenuation as well

as Q-approximations based on different numbers of relaxation mechansims (or SLS)

to evaluate the different methods.

An analytical solution for anelastic wave propagation in a homogeneous medium

may be obtained through the principle of correspondence (Bland, 1960). From

D'Alembert's solution we obtain the impulse response for the one-dimenstional case

as,

(w, x) = e-ix/v(), (24)

where i -, x is the offset from the initial location of the source, and,

v(W) = c(w) I + 2--( sgn(w)) , (25)

where sgn(w) = -1 for w < 0, and sgn(w) = 1 for w > 0. c(w) and Q(w) are the

desired velocity and Q relations. An arbitrary source wavelet can thus be convolved

with the impulse response in equation (24) to yield the solution as a function of offset

and time, enabling the calculation of analytic seismograms for desired velocity and

Q-relations as functions of frequency.
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Futterman (1962) proposed three different analytical expressions to model Q as a

function of frequency in real earth media based on theoretical rock mechanics studies.

The velocity vs. frequency relation is given from the Q vs. frequency relation through

Kramer-Kr6nig's relation. Martinez and McMechan (1991a) chose one of the expres-

sions to obtain a T-p domain solution for anelastic wave propagation. Using shale and

Plexiglass, Wuenschel (1965) showed that another of Futtermans (1962) expressions

fits very close to experimental results. This is the one we used to benchmark the

different Q-modeling algorithms. The velocity is given by,

c(uw) CO/( 1 2 1olog I (w/wo)2 - 1 i , (26)

and thus Q is,

Q(w) = Qo 1 21r log I (w/wo)2 - 1 1) (27)

w0 is a reference frequency, much smaller than the frequencies modeled. In our ex-

periments we used wo=0.01 rad/s, but the value of w0 is not crucial for the model. co

is the reference velocity chosen to yield the desired velocity at the center frequency of

the wavelet in the simulations, and Q0 is the analogous reference Q-value. In our sim-

ulations we will refer to the velocity and the Q as the values at the center frequency

of the wavelet used in the experiments (10 Hz).

Test case

The source in the simulations is a Ricker wavelet with an amplitude of 1 and a

center frequency of 10 Hz, which yields a band width between 2 and 25 Hz for a 40 dB

threshhold. Number of gridpoints and timestep for the viscoelastic simulation were

chosen in accordance with rules outlined by Robertsson et al. (1994). The density,

p, is 1000 kg/m 3 , and co=1500 m/s. We chose two models. In the first we used a

moderate value of Qo=100. This is typical for shallow rocks or consolidated sediments
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(e.g., Bourbie et al. (1987) and Hamilton (1980)). In the second model QO=20, which

is a low value characteristic of shallow unconsolidated sediments on the seafloor (e.g.,

Hamilton (1980)). The receivers are located at 3000 m and 6000 m from the source,

corresponding to 20 and 40 wavelengths for the center frequency of the wavelet.

Q-modeling.-We investigated two cases. First, we employed five relaxation

mechanisms to approximate the Q=20 model. For strong attenuation, accurate mod-

eling of Q is naturally more crucial than for cases where the attenuation is weaker.

We do not show results from approximations of a Q of 100 using five relaxation

mechanisms since the excellent results we achived for the Q=20 approximation al-

ready illustrates the case of five relaxation mechanisms. Second, we employed two

relaxation mechanisms to approximate both the Q=20 and the Q=100 models. As

described above, we have constrained the distribution of 7-,j so that for each of the

Q-optimization methods, the rT are identical both for Q=100 and Q=20. This yields

optimally low memory requirements, which is particularly important in 2-D and 3-D

applications. The relaxation times obtained from the different Q-optimization meth-

ods are listed in Tables 1, 2, 3, 4, and 5.

Equation (11) may be used to calculate Q as a function of frequency for the dif-

ferent Q-optimization methods. In Figure 2 we have plotted these curves when using

two relaxation mechanisms to approximate a Q of 20 between 2 and 25 Hz. As we can

see the T-method yields a close to constant Q over the entire frequency band. The

single relaxation mechanism approximation yields a Q that roughly varies between

18 and 30. The chosen source wavelet has its energy concentrated around 10 Hz, and

since the single relaxation mechanism approximation varies between a Q of 18 and

22 between 5 and 20 Hz, we can expect fairly good simulation results also for this

optimally computational inexpensive Q-modeling method. The Pad6 approximant

method yields a quite poor result, barely better than the single relaxation mechanism

approximation. The Pad6 approximant method is in some sense optimal, but con-
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verges slowly as the number of approximants are increased, when a constant-Q over

a relatively short frequency band is desired.

In Figure 3 we show the Q-approximations when using five mechanisms to approx-

imate a Q of 20 between 2 and 25 Hz. The r-method yields very close to constant

Q over the frequency band. Also, the Pad6 approximant method now gives a much

better approximation compared to the case when using only two approximants. It is

however still worse than the approximation obtained through the r-method.

In Figure 4 we illustrate the Q-approximations when using two mechanisms to

approximate a Q of 100 between 2 and 25 Hz. Again, the r-method yields the best

result and the Pade' approximant method yields a result similar to that of the single

relaxation mechanism approximation.

Simulations.-In Figure 5 we have plotted the seismograms collected at 6000 m

offset when approximating a constant Q of 100 with two relaxation mechanisms. As

we can see all methods reproduce the analytic solution fairly well, although the r-

method clearly is the most successful. The Pad6 approximant method and the single

relaxation mechanism approximation both yield worse but reasonably accurate and

similar solutions. The latter is not a surprise since the corresponding Q vs. frequency

relations are very similar (see Figure 4).

In Figure 6 we show the seismograms collected at 3000 m offset when approxi-

mating a constant Q of 20 using two relaxation mechanisms. All methods display

highly accurate results, even though the T-method again is most successful. In Fig-

ure 7 we show the analogous seismograms collected at 6000 m offset. Notice that

the amplitude of the analytic solution now only is approximately 1 percent of the

initial amplitude. Furthermore, for 40 wavelengths path of propagation, cylindrical

and spherical spreading would significantly contribute to even stronger decay of the

waveform in 2-D and 3-D simulations. There are few seismic applications, if any,

where accurate modeling of such extreme cases is of interest. We achive a highly
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accurate solution using the T-method with only two relaxation mechanisms. The

Pad6 approximant method as well as the single relaxation mechanism approximation

yield less accurate results. The single relaxation mechanism is however the trivial

and always least computationally expensive constant Q approximation. We find it

remarkable that such a simple approximation yields a for most applications suffi-

ciently accurate result after 40 wavelengths propagation of a Ricker wavelet through

a medium with a Q of 20. Since most high frequency components are attenuated,

the seismograms we collect at 6000 m offset is reflected by the character of the Q

vs. frequency curves at lower frequencies (somewhere around 5 Hz). These compo-

nents were much weaker in the original wavelet but are not subjected to as strong

attenuation due to the fewer wavelengths in the path of propagation.

Finally we show the results when using five relaxation mechanisms to approxi-

mate a constant Q of 20. At 3000 m offset (Figure 8), the analytic solution is well

reproduced by all methods, as was the case in Figure 6 when using only two relax-

ation mechanisms. Again, the T-method yields the most accurate reult. In Figure 9

we show seismograms collected at 6000 m offset. The r-method yields an excellent

result; The collected seismogram is very close to the analytic solution for this the

most extreme case of strong attenuation and long path of propagation. As is evident

from Figure 3, the method models wave propagation just as well over the entire fre-

quency band between 2 and 25 Hz. The practically inconvenient and expensive Pad6

approximant method yields a quite poor result, only marginally more accurate than

the single relaxation mechanism approximation.

IMPLEMENTATION CONSIDERATIONS

Modelling of viscoelastic wave propagation has been regarded as considerably more

computationally expensive than purely elastic wave propagation. Robertsson et al.

(1994) presented a highly efficent viscoelastic finite-difference scheme enabling mod-
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eling of widely varying Q in highly heterogeneous media. 2-D as well as 3-D schemes

have been implemented at a computational cost that only marginally exceeds that of

analogous purely elastic finite-difference schemes (Robertsson et al., 1994). Compu-

tational efficiency may be stated in terms of the number of parameter and variable

fields that are required to be stored simultaneously and the number of calculations

per grid-point and time step required for a particular scheme. In Table 6 we compare

the computational efficiency for 2-D and 3-D viscoelastic schemes using the different

Q-modeling algorithms to the analogous elastic schemes. Both the memory require-

ments and the number of calculations are very much dependent on the Q-modeling

algorithm employed. From Table 6 we conclude that the r-method is superior to

the Pad6 approximant method also when it comes to computational efficiency. The

simplest Q-modeling method, the single relaxation mechanism approximation, is only

marginally more expensive than purely elastic modelling.

As we have seen the single relaxation mechanism approximation yields results that

are sufficiently accurate for most practical purposes. Q is a physical quantity that is

difficult to measure with high accuracy in real earth media (White, 1992). Also, it

is still debated how realistic a constant Q as a function of frequency model always

is (Bourbie et al., 1987). Thus, the uncertainty of the modeling may very well be

greater than the inaccuracy of a single relaxation mechansim constant Q approxima-

tion. There is however another reason for using more than one relaxation mechanisms.

Absorbing boundaries can be implemented by decreasing the attenuation to as low

as Q=2 within a narrow frame around the desired grid (Robertsson et al., 1994). To

avoid impedance reflections it is important to tune the Lam6 parameters for constant

velocity. The deviation from a constant Q for such low values of Q is greater than for

the more physically realistic values of Q within the desired grid, leading to velocity

variations within the frequency band of interest in the absorbing frame. Compensa-

tion may thus only be achived by employing additional relaxation mechanisms for a

closer to constant Q in the absorbing region. For a wavelet with a frequency content
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similar to that of the Ricker wavelet, we found that two relaxation mechanisms yield

sufficiently constant Q in the absorbing frame.

CONCLUSIONS

We have outlined the methodology of an algorithm, the r-method, to model con-

stant Q vs. frequency for viscoelastic/viscoacoustic wave propagation simulators. The

'r-method enables considerable savings of memory and computations for both 2-D and

3-D viscoelastic finite-difference schemes and is much easier to implement compared

to other methods, such as the Pad6 approximant method (Day and Minster, 1984)

We performed a series of 1-D experiments to compare the r-method to an analyti-

cal solution based on the principle of correspondence (Bland, 1960) and a constant-Q

model by Futterman (1962). We also compared the method to the Pad6 approxi-

mant method and a single relaxation mechanism approximation. We found that the

r-method also yields the highest accuracy in the simulations. The Pad6 approximant

method should however yield the most accurate results for cases with large numbers

(probably at least 10) of SLSs (Day and Minster, 1984).

The single relaxation mechanism approximation produced reasonably accurate

results. For most applications this method yields sufficiently accurate modeling of Q.

In practice, we see no reason for employing more accurate approximations than the r-

method using two relaxation mechanisms. This method also enables implementation

of highly efficient absorbing boundaries.
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TABLES

rai (ins)j

99.472

2 7.2343

TABLE 1. Optimized rlj for two relaxation mechanisms to yield a constant Q between

2 and 25 Hz, using the --method. 7=0.10110 for Q=20, and 7=0.019156 for Q=100.
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SI- (MS) 7.t (ms) (Q=20) ra (ma) (Q=100)

1 5.7653 5.9428 5.7946

2 21.495 23.471 21.882

TABLE 2. Optimized relaxation mechanisms (for a total of two) to yield a constant Q

between 2 and 25 Hz, using the Pad6 approximant method.
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T, (mS)] T, (ms) (Q=20) 7r, (MS) (Q=100)

15.056 16.824 15.374

TABLE 3. Optimized relaxation mechanism to yield a constant Q between 2 and 25 Hz,

for a single relaxation mechanism.

20



ý11 7.11 (MS)

1 265.26

2 52.203

3 10.273

4 2.0218

5 0.39789

TABLE 4. Optimized rl for five relaxation mechanisms to yield a constant Q between

2 and 25 Hz, using the r-method. 7=0.060168 for Q=20.
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1 _ _-_l (ms) rel (ms) (Q=20)

S1.1132 1.1265

2 1.3792 1.4033

3 2.1214 2.1748

4 4.5928 4.7730

5 22.466 24.341

TABLE 5. Optimized relaxation mechanisms (for a total of five) to yield a constant Q

between 2 and 25 Hz, using the Pad6 approximant method.
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Method Memory (2-D) [ Calculations (2-D) Memory (3-D) Calculations (3-D)

Single mech. 13 120 20 220

r 2 mech. 16 130 26 240

7- 5 mech. 25 170 44 310

Pad6 2 mech. 18 140 28 255

Pad6 5 mech. 33 200 52 360

Elastic 8 70 12 160

TABLE 6. The computational efficiency of viscoelastic finite-difference schemes as

(Robertsson et al., 1994) implemented them when employing the different Q-modeling meth-

ods, compared to the analogous purely elastic finite-difference schemes. The computational

efficiency is characterized by the number of parameter or variable fields required to be stored

simultaneously and by the number of calculation per gridpoint and time step necessary.
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FIGURES

FIG. 1. Q as a function of frequency for two different r and two different T-.

Solid: T = 4.6212 x 10-2, •, = 1.5915 x 10-2 corresponds to 10 Hz. Dashed:

r7 4.6212 x 10-2, 7- = 1.5915 x 10' corresponds to 100 Hz. Dash-dotted:

7- 2.3106 X 10-2, T, = 1.5915 X 10-2 corresponds to 10 Hz.

FIG. 2. Approximations to a constant Q of 20 between 2 and 25 Hz. Q0 P 18

in algorithm. Solid: Desired Q. Dashed: T-method using two relaxation mechanisms.

Dotted: Pad6 approximant method using two relaxation mechanisms. Dash-dotted:

Single relaxation mechanism approximant.

FIG. 3. Approximations to a constant Q of 20 between 2 and 25 Hz. Q0 - 18

in algorithm. Solid: Desired Q. Dashed: r-method using five relaxation mechanisms.

Dotted: Pad6 approximant method using five relaxation mechanisms. Dash-dotted:

Single relaxation mechanism approximant.

FIG. 4. Approximations to a constant Q of 100 between 2 and 25 Hz. Q0 - 95

in algorithm. Solid: Desired Q. Dashed: T-method using two relaxation mechanisms.

Dotted: Pad6 approximant method using two relaxation mechanisms. Dash-dotted:

Single relaxation mechanism approximant.

FIG. 5. Seismograms collected at 6000 m offset in the model with a constant Q

of approximation of 100 between 2 and 25 Hz. Solid: Analytical solution. Dashed: r-

method using two relaxation mechanisms. Dotted: Pad6 approximant method using

two relaxation mechanisms. Dash-dotted: Single relaxation mechanism approximant.

FIG. 6. Seismograms collected at 3000 m offset in the model with a constant Q

of approximation of 20 between 2 and 25 Hz. Solid: Analytical solution. Dashed: T-
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method using two relaxation mechanisms. Dotted: Pad6 approximant method using

two relaxation mechanisms. Dash-dotted: Single relaxation mechanism approximant.

FIG. 7. Seismograms collected at 6000 m offset in the model with a constant Q

of approximation of 20 between 2 and 25 Hz. Solid: Analytical solution. Dashed: r-

method using two relaxation mechanisms. Dotted: Pad6 approximant method using

two relaxation mechanisms. Dash-dotted: Single relaxation mechanism approximant.

FIG. 8. Seismograms collected at 3000 m offset in the model with a constant Q

of approximation of 20 between 2 and 25 Hz. Solid: Analytical solution. Dashed: T-

method using five relaxation mechanisms. Dotted: Pad6 approximant method using

five relaxation mechanisms. Dash-dotted: Single relaxation mechanism approximant.

FIG. 9. Seismograms collected at 6000 m offset in the model with a constant Q

of approximation of 20 between 2 and 25 Hz. Solid: Analytical solution. Dashed: r-

method using five relaxation mechanisms. Dotted: Pad6 approximant method using

five relaxation mechanisms. Dash-dotted: Single relaxation mechanism approximant.
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FIG. 1. Q as a function of frequency for two different T- and two different r•. Solid:

r- 4.6212 x 10-2, r• 1.5915 x 10-2 corresponds to 10 Hz. Dashed: r =4.6212 x 10-2,

r•=1.5915 x 10.3 corresponds to 100 Htz. Dash-dotted: T 2.3106 x 10.2,

r•=1.5915 x 10.2 corresponds to 10 Hz.
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FIG. 2. Approximations to a constant Q of 20 between 2 and 25 Hz. Q0 18 in

algorithm. Solid: Desired Q. Dashed: r-method using two relaxation mechanisms. Dot-

ted: Pad6 approximant method using two relaxation mechanisms. Dash-dotted: Single

relaxation mechanism approximant.
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gorithm. Solid: Desired Q. Dashed: T-method using five relaxation mechanisms. Dotted:

Pad6 approximant method using five relaxation mechanisms. Dash-dotted: Single relax-
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FIG. 5. Seismograms collected at 6000 m offset in the model with a constant Q of

approximation of 100 between 2 and 25 Hz. Solid: Analytical solution. Dashed: T-method

using two relaxation mechanisms. Dotted: Pad6 approximant method using two relaxation

mechanisms. Dash-dotted: Single relaxation mechanism approximant.
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FIG. 6. Seismograms collected at 3000 m offset in the model with a constant Q of

approximation of 20 between 2 and 25 Hz. Solid: Analytical solution. Dashed: r-method

using two relaxation mechanisms. Dotted: Pad6 approximant method using two relaxation

mechanisms. Dash-dotted: Single relaxation mechanism approximant.
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FIG. 7. Seismograms collected at 6000 m offset in the model with a constant Q of

approximation of 20 between 2 and 25 Hz. Solid: Analytical solution. Dashed: 7--method

using two relaxation mechanisms. Dotted: Pad6 approximant method using two relaxation

mechanisms. Dash-dotted: Single relaxation mechanism approximant.

32



I I I

*/

0.05 -
.1" II

.I I

S1 II

"0 :1

'. ... .... ... .
"' I I

:•\ . 1 I

\

-0.05 [
I I I III II

1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35
t (s)

FIG. 8. Seismograms collected at 3000 m offset in the model with a constant Q of

approximation of 20 between 2 and 25 Hz. Solid: Analytical solution. Dashed: r-method

using five relaxation mechanisms. Dotted: Pad6 approximant method using five relaxation

mechanisms. Dash-dotted: Single relaxation mechanism approximant.
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FIG. 9. Seismograms collected at 6000 m offset in the model with a constant Q of

approximation of 20 between 2 and 25 Hz. Solid: Analytical solution. Dashed: T-method

using five relaxation mechanisms. Dotted: Pad6 approximant method using five relaxation

mechanisms. Dash-dotted: Single relaxation mechanism approximant.
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